

Low-lumi SUSY and Some Other Issues Revisited

Outline

- Low-mass low-lumi SUSY revisited (with S.Kunori)
 - Reminder
 - New (broader) bandwidth allocation
 - Quick cuts evaluation (without thorough optimization)
- Re-estimate of HCAL occupancy
 - New (short) shape
 - Full simulation without BCID
- One more look at $\Delta \phi$ (Jet1,Jet2) cut

SUSY Trigger: Reminder (I)

- Low luminosity study: CMS IN-2002/036
 http://cmsdoc.cern.ch/~abdullin/events/talks/acat2002.pdf
 - Probing points studied at the Tevatron II reach limit
 (along squark isomass curve of ≈ 400 GeV)
 - Given 2 kHz @ L1 and 3Hz @ L2
 - Hybrid genetic algorithm written for cuts optimization
 - ➤ 6 essential combinations of L1 and L2 channels (out of 18)
 - > R-parity violation scenario yields marginal efficiency @ L2

SUSY Trigger: Reminder (II)

H.Baer et al., hep-ph/9802441; Phys.Rev.D58:075008, 1998

SUSY Trigger: Reminder (III)

- R-parity violation as a most challenging trigger scenario (?)
 - \rightarrow χ_1^0 \rightarrow 3 quarks
 - > 6 additional soft jets:

$$\tilde{\chi}_1^0$$
 mass \approx 45-70 GeV

- Missing ET shrinks, still some amount remains
 - copious b-jets, W/Z, taus and neutralinos
- **ISAJET 7.58 ISAWIG 1.104 HERWIG 6.301**

Points 4R

SUSY Trigger: Reminder (IV)

- 6 mSUGRA samples
 - spring 2002 production
 - 2000 events each
 - low-lumi energy corrections from Andrei Krokhotine
- 3 SM backgrounds ("Bkgd")
 - spring 2002 production
 - \rightarrow QCD (with HF filter) ≈ 1,050,000 events
 - autumn 2001 production
 - > Wj (W→l v) ≈ 150,000 ev.
 - \rightarrow t \bar{t} \approx 46,000 ev.
 - per negligible @L1, still some contribution @L2

SUSY Trigger Revisited (I)

- Previous ("optimized") cuts were considered a bit too complicated (8 L1 && L2 streams) and the bandwidth allocation a bit obsolete ...
- So the initial idea was to make L&&L2 streams simpler (more transparent) and to use somehow optimized Njet cut for R-parity violation scenario ...
 - F

taking into account a strong time deficit genetic optimization was given up (at least for a while)

SUSY Trigger Revisited (II)

- @L1 we start with the cuts from Andrei's jets rates :
 - J1(138), J3(66), J4(53) assumed to provide 1 kHz each
 - J1(60)&&MET(65) added for completeness (e.g. inv.Higgs)
- @L2 basically the same cuts (a bit sharpened) :
 - J1(150), J3(75), J4(60) and MET on top of it
- L1 cuts yield (much) lower rate than anticipated
 - after quite time-consuming investigation some problems were found in Andrei's code ("post factum")

SUSY Trigger Revisited (III)

first iteration ...

					_
		J1 138	J3 66	J4 53	J1&&MET 60 65
(6	4	82 (82)	86 (53)	87 (36)	92 (81)
%) (%	5	84 (84)	88 (58)	89 (40)	91 (80)
Signal efficiency (%)	6	70 (70)	79 (61)	80 (48)	83 (58)
effic	4R	90 (90)	93 (85)	94 (75)	94 (50)
gnal	5R	89 (89)	94 (86)	95 (76)	95 (39)
S	6R	67 (76)	86 (79)	87 (70)	87 (27)
Bk	kgd. (kHz)	0.91 (0.91)	1.20 (0.46)	1.29 (0.20)	1.61 (0.40)

looks redundant ...

SUSY Trigger Revisited (IV)

> J1(150) || J3(70) || J4(60)

MET > 93 GeV : ~5 Hz

SUSY Trigger Revisited (V)

second iteration ...

- L1 and L2 (new bandwidthes = 4 kHz and ~15 Hz) seems to be rather decoupled ...
 - so we probably don't need too much at L1 to efficiently trigger on SUSY at L2?
 - a simplified L1 selection : J3(70) || J1(60)&&MET(65) yields quite a low L1 rate of 0.71 kHz ...
 - L2 bandwidth to divide into ~5 Hz for J1&&MET and ~7 Hz for #jet cut (for R-parity violation case)
 - 1 Hz for J1 and J3 each (570 and 210 GeV respectively) in addition, so that total L2 bandwidth is about ~15 Hz, not counting b/τ-channels...

SUSY Trigger Revisited (VI)

second iteration ...

insignificant drop by a few % still quite sufficient figures ...

less by a factor of ~ 2.3

SUSY Trigger Revisited (VII)

What about Njet cut at L2?

second iteration ...

SUSY Trigger Revisited (VIII)

second iteration ...

■ J1 and MET for R-parity conservation scenario

> J1(150) && MET(93) – quite an arbitrary choice...

		J1&&MET 150 93	
(%)	4	66	
%) Ko	5	65	
Signal efficiency (%)	6	36	
l effi	4R	26	
igna	5R	16	
S	6R	9	
Bk	Bkgd. (Hz)		

SUSY Trigger Revisited (IX)

second iteration ...

L2		J4 70	J1&&MET 150 93	Signal rate (Hz)
(0)	4	12	68 (66)	0.25
Signal efficiency (%)	5	15	68 (64)	0.29
cienc	6	17	44 (36)	0.44
l effic	4R	31	48 (26)	0.17
ignal	5R	32	42 (16)	0.18
S	6R	23	28 (9)	0.28
BI	kgd. (Hz)	7.06	11.37 (4.52)	

SUSY Trigger Revisited (X)

second iteration ...

Extended L2 table including J1 and J3

L2		J1 570	J3 210	J4 70	J1&&MET 150 93	Signal rate (Hz)
(0)	4	2	5 (3)	14 (12)	69 (66)	0.25
Signal efficiency (%)	5	2	5 (5)	18 (15)	69 (64)	0.29
ciena	6	1	3 (2)	18 (17)	45 (36)	0.45
l effi	4R	1	9 (7)	34 (32)	50 (26)	0.18
igna	5R	2	8 (7)	35 (32)	44 (16)	0.19
S	6R	1	4 (3)	23 (23)	29 (9)	0.29
В	Bkgd. (Hz)		1.51(0.89)	8.15(7.06)	12.29(4.52)	

HCAL Occupancy Revisited (I)

- Summer test beam provided evidence in favor of the "short shape"
 - ~ 80 % collected in 1 time bucket
 - noise is smaller (than collected in 2 buckets with "long shape")
- Calculations in CMS IN/2001-037 are not really suitable (for DAQ TDR)
 - long shape
 - Rather L1 estimates, as BCID was on
 - toy MC calculations for a few η rings

HCAL Occupancy Revisited (II)

- $\Delta \phi \times \Delta \eta$ size of towers differ, so we normalize Et
 - by the size of HB tower (0.087×0.08726)

$\Delta \phi$ (J1,J2) Revisited (I)

■ Though to be a QCD "killer" once upon a time ...

B

only a very high MET provides noticeable peak at $\Delta \phi \sim \pi$

F

better to rely on J1 ...

$\Delta \phi$ (J1,J2) Revisited (II)

 \blacksquare Modest $\Delta \phi$ (J1,J2) cut does not look very impressive

$\Delta \phi$ (J1,J2) Revisited (III)

similar to low-lumi case, less peaking (spoiled) though

SUMMARY

- Low-mass SUSY trigger revisited
 - Both with/without R-parity violation
 - Cuts are somehow optimised for given bandwidthes
 - A few simple cuts do the job
 - Efficiency is probably high enough even for R-parity
- HCAL occupancy re-calculated with "short" signal
 - Normalized to HB tower
 - Averaged over sub-detectors
 - Doesn't exceed 10% for Et>0.5 GeV per unit
- $\triangle \phi(J1,J2)$ looked at once more
 - Might be usefull at L2 in some cases